

COMPARATIVE ADSORPTION STUDIES OF NI (II) IONS ON MAGNETIC-CHITOSAN GRAFTED (ALKYL ACRYLATE) COMPOSITE PARTICLES

L. M. Iordache, G. Dodi, D. Hritcu, D. Draganescu, M. I. Popa *"Gheorghe Asachi" Technical University of Iasi, Romania*

Introduction/motivation Heavy metals

- \rightarrow are toxic to human health;
- \rightarrow mainly produced by industrial activities;

Removal of heavy metals

 \rightarrow chemical precipitation, membrane filtration, coagulation and flocculation, electrochemical methods, adsorption;

Magnetic adsorbents

→ magnetic iron oxide particles, magnetic nanocomposite adsorbents with polymeric supports, magnetic composites containing agricultural waste;

Introduction/motivation

Magnetite \rightarrow excellent way to resolve separation problems

Objectives and Outline

Mainobjective:Preparemagneticchitosangraftedalkylacrylatederivativescompositeparticlesas a novel magneticadsorbentmaterial.

- Composite particles synthesis
- Characterization
- Sorption Experiments
- Desorption and Regeneration Studies
- Conclusions and future work

Magnetite nanoparticles preparation

$Fe^{2+} + 2Fe^{3+} + 8HO^{-} = Fe_3O_4 + 4H_2O$

Synthesis of chitosan grafted with GMA (CS)

Composite particles synthesis

50°C,500 rpm, 24 h EGDMA, AZO

Figure 1. TEM picture (A) and size distribution histogram (B) of Fe₃O₄-CS-BMA

Figure 2. TEM picture (A) and size distribution histogram (B) of Fe₃O₄-CS-BA

Diameter, nm

Material	Average size (TEM) (nm)	Size (XRD) (nm)
Fe ₃ O ₄ -CS-HA	11.84	10.8
Fe ₃ O ₄ -CS-BMA	9.84	11.3
Fe ₃ O ₄ -CS-BA	11.65	13.42

Magnetization

The chitosan and acrylates peaks are overlapped therefore, an exact estimation of chemical structure was not possible.

Particles show remanent magnetization.

Adsorption Experiments

Sorption Experiments

Sorption Experiments

Desorption and Regeneration Studies

Material	Desorption in 0.1 M HCl solution (%)		
Fe ₃ O ₄ -CS-HA	40.5 - 97.5		
Fe ₃ O ₄ -CS-BMA	34.8 - 73.81		
Fe ₃ O ₄ -CS-BA	38.77 - 100		

Adsorption Isotherms

Material/Metal ion		HA/Ni ²⁺	BMA/Ni ²⁺	BA/Ni ²⁺
Langmuir constants	R ²	0.88	0.89	0.95
$\frac{C_e}{q_e} = \frac{1}{K_L \times q_m} + \frac{C_e}{q_m}$	$q_m (mg/g)$	5000	5000	5000
	$K_{L}(mL/mg)$	0.06	0.05	0.05
	R	0.75	0.8	0.77
Freundlich constants	R ²	0.98	0.98	0.99
$\log q_e = \log K_F + \frac{1}{n} \log C_e$	K _F	215	194	220.7
	n	0.9	0.95	0.98
Dubinin-Radushkevich				
constants	R ²	0.96	0.91	0.91
$\ln q_e = \ln X_m - K_{\rm DR}\varepsilon^2$	$X_{\rm m} ({\rm mg/g})$	998.8	919.1	887.7
	K_{DR} (mol ² /kJ ²)	0.56	0.58	0.48
	Es	0.94	0.93	1.02

 SEM HV: 30.00 kV
 WD: 14.25 mm

 View field: 1.44 mm
 Det: SE

 Date(m/d/y): 04/30/15
 nicanorb

200 μm

UTI-SIM 🎽

SEM HV: 30.00 kV WD: 14.30 mm View field: 1.43 mm Det: SE Date(m/d/y): 04/30/15 nicanorb

200 μm

^{200 μm} Fe₃O₄-CS-BA

 Fe_3O_4 -CS-BMA

Fe₃O₄-CS-BMA

Fe_3O_4 -CS-BA

SE M R O O Map data 1641 MAG: 5181 x HV: 30.0 kV WD: 14.3 mm

Fe₃O₄-CS-HA

Element	Fe ₃ O ₄ -CS-BMA		Fe ₃ O ₄ -CS-BA		Fe ₃ O ₄ -CS-HA	
	Atomic %	Wt. %	Atomic %	Wt. %	Atomic %	Wt. %
Oxygen	59.35	35.32	61.15	39.06	60.02	36.45
Iron	13.81	28.69	14.66	32.69	12.24	25.95
Carbon	13.02	5.81	15.24	7.31	13.65	6.22
Nickel	13.81	30.16	8.93	20.94	14.08	31.37

• Three types of magnetic chitosan grafted (alkyl acrylate) s particles were synthesized, characterized and successfully used for Ni cations adsorption.

- Three types of magnetic chitosan grafted (alkyl acrylate) s particles were synthesized, characterized and successfully used for Ni cations adsorption.
- The effects of various parameters (sorbent mass, time, temperature, ion concentration and pH) on the adsorption were studied.

- Three types of magnetic chitosan grafted (alkyl acrylate) s particles were synthesized, characterized and successfully used for Ni cations adsorption.
- The effects of various parameters (sorbent mass, time, temperature, ion concentration and pH) on the adsorption were studied.
- The adsorption processes were fitted into three isotherm models: Langmuir, Freundlich and Dubidin-Radushkevich.

- Three types of magnetic chitosan grafted (alkyl acrylate) s particles were synthesized, characterized and successfully used for Ni cations adsorption.
- The effects of various parameters (sorbent mass, time, temperature, ion concentration and pH) on the adsorption were studied.
- The adsorption processes were fitted into three isotherm models: Langmuir, Freundlich and Dubidin-Radushkevich.
- The maximum adsorption capacity for Ni²⁺ ions followed the order: Fe_3O_4 -CS-BA > Fe_3O_4 -CS-HA > Fe_3O_4 -CS-BMA > chitosan > magnetite.

- Three types of magnetic chitosan grafted (alkyl acrylate) s particles were synthesized, characterized and successfully used for Ni cations adsorption.
- The effects of various parameters (sorbent mass, time, temperature, ion concentration and pH) on the adsorption were studied.
- The adsorption processes were fitted into three isotherm models: Langmuir, Freundlich and Dubidin-Radushkevich.
- The maximum adsorption capacity for Ni²⁺ ions followed the order: Fe_3O_4 -CS-BA > Fe_3O_4 -CS-HA > Fe_3O_4 -CS-BMA > chitosan > magnetite.

Future work: Competitive adsorption of heavy metal ions.

Acknowledgements

This work was supported by a grant of the Romanian Ministry of National Education, CNCS-UEFISCDI, project number PN-II-ID-PCE-2012-4-0433.

THANK YOU FOR YOUR ATTENTION!